Пусть трапеция будет ABCD,AB=2,3 см; DC = 7,1 см; <C=45*. Проведем высоту BH, параллельную AD. Рассмотрим четырехугольник ABHD. Он - прямоугольник по признаку, так как <A,<D,<H - прямые. Имеем, что AB = DH = 2,3 см.Получаем, что НС = DC - AB = 7,1 - 2,3 = 4,8 (см) - из аксиомы 3.1. В треугольнике HBC <B = 45* из теоремы о сумме углов треугольника. Значит, так как <B = <C, то по признаку равнобедренного треугольника HBC - равнобедренный. Отсюда следует, что HB=HC = 4,8 см ответ: 4,8 см
Длины всех рёбер четырёхугольной пирамиды SABCD равны. Периметр основания пирамиды равен 16 см. Точки M, N, P, T, K, F - середины ребер SA, SB, SC, SD, DC и BC соответственно, O - точка пересечения AC и BD. Вычислите объем призмы MNPTOFCK.
РЕШЕНИЕ:
• SABCD - правильная четырёхугольная пирамида, так как все его рёбра равны. В основании этой пирамиды лежит квадрат со стороной, равной АВ = Р abcd / 4 = 16 / 4 = 4 см. • MNPTOFCK - наклонная призма, все рёбра которого равны по 2 см. Стороны верхнего основания являются средними линиями боковых граней, стороны нижнего основания равны половине сторон квадрата ABCD. Соответственно, в призме MNPTOFCK в основаниях лежат квадраты, а боковые грани - ромбы. • Для того чтобы найти объём призмы, необходимо знать площадь основания и высоту призмы. • Верхнее основание призмы делит высоту SO данной пирамиды на две равные части, так как в тр. АСS МР - средняя линия. К тому же тр. АСS - равнобедренный, прямоугольный, по тому следствию, что тр. АВС = тр. АСS по трём сторонам. В правильной четырёхугольной пирамиде высота проецирется в центр основания, поэтому АО = ОС = DO = OB. В прямоугольном треугольнике медиана, проведённая в гипотенузе, равна её половине, то есть АО = ОС = SO. • В тр. АВС: по т. Пифагора АС = V( 4^2 + 4^2 ) = 4V2 см ; AO = OC = AC/2 = 4V2 / 2 = 2V2 см ; SН = НO = SO/2 = AO/2 = 2V2 / 2 = V2 см. • V призмы = S ofck • HO = 2 • 2 • V2 = 4V2 см^3 Также можно заметить, что V sabcd = S abcd • SO / 3 => 3•V sabcd = S abcd • SO V призмы = S ofck • HO = ( S abcd/4 ) • ( SO/2 ) = S abcd • SO / 8 = 3•V sabcd / 8
Объяснение:
а) стороны равны 10 см, 15 см и 25 см;
10+15=25 см
Такого треугольника не существует,т.к. сумма двух сторон = третьей,а должна быть больше третьей стороны.
б) стороны относятся как 3:5:10;
3х+5х=8х, 8х<10x ,значит и сумма длин этих сторон будет меньше третьей,а должна быть больше третьей стороны.Такого треугольника не существует.
в) углы равны 46°, 64° и 80°;
46°+ 64° + 80°=180° Существует,так как сумма всех углов Δ=180°
г) углы относятся как 3:5:10.
Существует 3+5+10=18, т.к.180°÷18=10°,если одной части соответствует 10°,то 18×10°=180°