В треугольнике угол A=30° угол C=45° а высота BD= 4 см.
Найдите стороны треугольника.
----------------------
Высота ВД противолежит углу, равному 30º. ⇒ BD равна половине гипотенузы ∆ АВД.
Гипотенуза АВ=4*2=8 см.
АD найдем по т.Пифагора:
АD²=АВ²-ВD²
АD=√(64-16)=√48
АD=4√3 см
В прямоугольном ∆ ВDС острый угол ВСD=45º, ⇒ угол СВD=45º,
∆ СВD - равнобедренный, СD=ВD=4 см
По т.Пифагора ВС=4√2 см ( проверьте)
Тогда АС=АD+DС=4√3+4=4(√3+1)
Стороны равны
АВ=8,
ВС=4√2
AC =4(√3+1)
-----------
Если Вы уже изучали тригонометрические функции, то можно использовать их значение для заданных углов.
АВ=ВD:sin30º=4:0,5=8 см
BC=BD:sin45º=4:(√2)/2=4√2 см
АС=АD+DС=4√3+4=4(√3+1) см
Дано:
АBCD - равнобедренная трапеция;
АВ = СD (боковые стороны);
BC (основание) = 3;
AD (основание) = 9;
Угол DAB = углу ADC = 45°;
BH и СN - высоты АВСD.
Найти: S (ABCD).
1) Рассмотрим прямоугольник HBCN (т. к. BH и CN - высоты АВCD):
▪ВС=HN=3 см (по свойству противоположных сторон параллелограмма).
2) AH = DN = (AD - HN) : 2 = (9 см - 3 см) : 2 = 6 см : 2 = 3 см.
3) Угол АВС = углу BCD (т. к. ABCD - равнобедренная трапеция) = (360° (сумма всех углов четырёхугольника) - угол DAB - угол ADC) : 2 = (360° - 45° - 45°) : 2 = 270° : 2 = 135°.
4) Рассмотрим прямоугольный треугольник АВН (т. к. ВН - высота ABCD):
▪Угол АВН = угол АВС - угол СBH = 135° - 90° (т. к. ВН - высота ABCD) = 45° => угол DAB = углу АВН = 45° => АВН - равнобедренный треугольник с прямым углом Н => АВ = BH.
5) ...