Боковые стороны, значит, равны по 4 см, т.к. равны у равнобедренного треугольника, и синус 120 градусов равен синусу 60 градусов, равен √3/2, тогда площадь равна половине произведения боковых сторон на синус угла между ними.
(4*4*√3/2)/2=4√3/см²/, найдем теперь по теореме косинусов основание равнобедренного треугольника, учитывая , что косинус 120 град. равен -1/2, основание равно
√((4²+4²-2*4*4*(-1/2))=4√3, значит, радиус описанной окружности равен а*в*с/4S=(4*4*4√3)/(4*4√3)=4/см По теореме синусов а/sinα=2*R
R=a/2sinα, найдем угол α при основании и подставим в эту формулу.
Углы при основании равны, поэтому α=(180°-120°)/2=30°
Итак, радиус равен 4/(2sin30°)=4/(2*1/2)=4/cм/
Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5
Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу)
AB=4+x
CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20
Разбираем квадратичное уравнение:
x²-10x-20=0
D= 100+4*20=180 √D= 6√5
x_{12} = 5+-3√5
x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5.
ответ: 5+3√5