Вы, возможно, ошиблись в условии, и нужно найти площадь треугольника АВС, а не АВD?
Иначе для чего дана длина стороны ВС и отрезка DС? Сделаем рисунок к задаче.
Рассмотрим ⊿ ВDС.
Катет ВD=12 см, гипотенуза ВС=13 см.
С отрезком DС основания они составляют "египетский" треугольник, поэтому этот отрезок равен 5 см.
Треугольник АВD - также прямоугольный, а так как угол А=45°, он и равнобедренный.
Отрезок АD основания равен высоте ВD=12 см
Основание АС треугольника АВС равно
АС=АD+DС=12+5=17 см
S ᐃ АВС=ВD·АС⠰2=102 см²
Пирамида MABCD, основание - прямоугольник ABCD: AD=BC=18 см; AB=CD=10 см; O- точка пересечения диагоналей AС и BD, MO - высота пирамиды. Так как у прямоугольника диагонали равны и точкой пересечения делятся пополам, то OA = OB = OC = OD - это проекции боковых ребер на основание. Проекции наклонных равны, следовательно, наклонные тоже равны : AM = BM = CM = DM - боковые ребра пирамиды. Тогда ΔAMD = ΔBMC - по трём равным сторонам, ΔAMB = ΔDMC - по трём равным сторонам. Проведем KT║AD ⇒ OK=OT=AD/2 = 18/2 = 9 смΔMOT - прямоугольный, теорема ПифагораMT² = MO² OT² = 12² 9² = 144 81=225 = 15²MT = 15 см см²Проведем FG║DC ⇒ OG=OF=DC/2 = 10/2 = 5 смΔMOF - прямоугольный, теорема ПифагораMF² = MO² OF² = 12² 5² = 144 25 = 169 = 13²MF = 13 см см²Площадь боковой поверхности пирамиды см²Sбок = 384 см²Площадь основания см²Площадь полной поверхности пирамиды S = 384 180 = 564 см²