Вариант 4, самостоятельная
работа, геометрия, 8 класс
1. Дан треугольник ABC с
прямым углом С. АС = 18 см,
BC = 30 см. Найдите sin A, sin
В, cos A, cos B, tg A, tg В.
2. cos y = Найдите ѕіn уи tg v.
3. Дан треугольник ABC с
прямым углом С. sin A =
Найдите углы А и В, а также
cos A, tg A, cos B, sin Ви tg В.
проводим высоту СН на АД
Площадь трапеции =1/2*(АД+ВС) * СН
Из точки С проводим прямую параллельную ВД до пересечения с продолжением основания АД в точке К. Четырехугольник НВСК - параллелограмм, ВС=ДК=5, ВД=СК=9, АК=АД+ДК=10+5=15, СН - высота треугольника АСК
площадь треугольника АСК = 1/2АК*СН, но АК=АД+ДК(ВС)
т.е. площадь треугольника АСК=площадь трапеции АВСД,
площадь треугольника АСК=корень(р * (р-АС)*(р-СК)*(р-АК)), где р -полупериметр
полупериметр треугольника АСК=(12+9+15)/2=18
площадь треугольника АСК=корень(18 *6*9*3)=54 = площадь трапеции АВСД