Такая задача решается двумя
1) - геометрическим,
2) - векторным.
1) Отрезки AD и BE равны между собой, их длина равна:
AD = BE =√(1² + (1/2)²) = √(5/4) = √5/2.
Перенесём отрезок AD точкой D в точку Е.
Получим равнобедренный треугольник ВЕК, где точка К - середина АС, а ВК - высота треугольника основания. ВК = 1*cos 30° = √3/2.
Угол ВЕК и есть искомый угол.
Его косинус равен:
cos BEK = ((√5/2)² + (√5/2)² - (√3/2)²)/(2*(√5/2)*(√5/2)) = (7/4)/(10/4) = 7/10.
∠BEK = arc cos(7/10) = 0,79539883 радиан = 45,572996°.
с₁ = 6 см
∠А = 30°
S₂ = 18√3 см²
Катет против угла в 30 градусов в исходном треугольнике в 2 раза меньше гипотенузы
a₁ = c₁/2 = 3 см
Второй катет исходного треугольника по т. Пифагора
b₁² + a₁² = c₁²
b₁² + 3² = 6²
b₁² + 9 = 36
b₁² = 27
b₁ = √27 = 3√3 см
Площадь исходного треугольника
S₁ = 1/2*a₁*b₁ = 1/2*3*3√3 = 9√3/2 см²
Отношение площадей подобных треугольников равно квадрату коэффициента подобия
k² = S₂/S₁
k² = 18√3/(9√3/2) = 18*2/9 = 4
k = √4 = 2
Наибольшая сторона в прямоугольном треугольнике - это гипотенуза
k = c₂/c₁
2 = c₂/6
c₂ = 2*6 = 12 см
И это ответ :)