М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Eleonortttt
Eleonortttt
14.12.2022 08:32 •  Геометрия

Угол противоположный основе равнобедренного треугольника равно 120 градусов.Высота проведенная к боковой стороне равняется 9 см.Найди основу этого треугольника.​

👇
Ответ:

4,5

пусть угол 120 ° - угол А

углы В и С - углы при основании

т. к. треугольник равнобедренный, то угол В= угол С

сумма углов треугольника 180° , значит

угол В= угол С = (180- 120):2= 30°

высота - ВН

угол ВНС = 90 ° , т к ВН высота

значит треугольник ВНС прямоугольный

по теореме синусов ВН/sinC=BC/ sin BHC

заменяем

получаем 9 / 0,5 = ВС/1

ВС= 4,5


Угол противоположный основе равнобедренного треугольника равно 120 градусов.Высота проведенная к бок
4,4(67 оценок)
Открыть все ответы
Ответ:
1) Т. к. в равнобедренном треугольнике боковые стороны равны, а медианы, выходят из вершин и пересекают противоположную грань посередине, можно записать что AK=CM.
2) В равнобедренном треугольнике, медианы пересекаются в точке О. Эта точка, делит медиану в соотношении 2:1 начиная от вершины. Учитывая, что медианы в равнобедренном треугольнике равны (?нужно уточнить?), можно сказать, что КО=ОМ, а АО=ОС.
3) Исходя из 1)АК=СМ и 2) КО=ОМ, АО=ОС можно сделать вывод, что треугольники равны по трём сторонам => Треугольники АКО и СОМ равны
4,6(42 оценок)
Ответ:
KultchiK
KultchiK
14.12.2022
Пусть задан треугольник со сторонами a, b и с. При этом сумма длин двух любых сторон треугольника должна быть больше длины третьей стороны, то есть a+b>c, b+c>a и a+c>b. И необходимо найти градусную меру всех углов этого треугольника. Пусть угол между сторонами a и b обозначен как α, угол между b и c как β, а угол между c и a как γ.

Теорема косинусов звучит так: квадрат длины стороны треугольника равен сумме квадратов двух других длин его сторон минус удвоенное произведение этих длин сторон на косинус угла между ними. То есть составьте три равенства: a²=b²+c²−2×b×c×cos(β); b²=a²+c²−2×a×c×cos(γ); c²=a²+b²−2×a×b×cos(α).

Из полученных равенств выразите косинусы углов: cos(β)=(b²+c²−a²)÷(2×b×c); cos(γ)=(a²+c²−b²)÷(2×a×c); cos(α)=(a²+b²−c²)÷(2×a×b). Теперь, когда известны косинусы углов треугольника, чтобы найти сами углы воспользуйтесь таблицами Брадиса или возьмите из этих выражений арккосинусы: β=arccos(cos(β)); γ=arccos(cos(γ)); α=arccos(cos(α)).

Например, пусть a=3, b=7, c=6. Тогда cos(α)=(3²+7²−6²)÷(2×3×7)=11/21 и α≈58,4°; cos(β)=(7²+6²−3²)÷(2×7×6)=19/21 и β≈25,2°; cos(γ)=(3²+6²−7²)÷(2×3×6)=-1/9 и γ≈96,4°.

Эту же задачу можно решить другим через площадь треугольника. Сначала найдите полупериметр треугольника по формуле p=(a+b+c)÷2. Затем посчитайте площадь треугольника по формуле Герона S=√(p×(p−a)×(p−b)×(p−c)), то есть площадь треугольника равна квадратному корню из произведения полупериметра треугольника и разностей полупериметра и каждой из сторон треугольника.

С другой стороны, площадь треугольника равна половине произведения длин двух сторон на синус угла между ними. Получается S=0,5×a×b×sin(α)=0,5×b×c×sin(β)=0,5×a×c×sin(γ). Теперь из этой формулы выразите синусы углов и подставьте полученное в 5 шаге значение площади треугольника: sin(α)=2×S÷(a×b); sin(β)=2×S÷(b×c); sin(γ)=2×S÷(a×c). Таким образом, зная синусы углов, чтобы найти градусную меру, используйте таблицы Брадиса или посчитайте арксинусы этих выражений: β=arccsin(sin(β)); γ=arcsin(sin(γ)); α=arcsin(sin(α)).

Например, пусть дан такой же треугольник со сторонами a=3, b=7, c=6. Полупериметр равен p=(3+7+6)÷2=8, площадь S=√(8×(8−3)×(8−7)×(8−6))=4√5. Тогда sin(α)=2×4√5÷(3×7)=8√5/21 и α≈58,4°; sin(β)=2×4√5÷(7×6)=4√5/21 и β≈25,2°; sin(γ)=2×4√5÷(3×6)=4√5/9 и γ≈96,4°.
4,8(86 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ