Вписанные углы опирающиеся на диаметр равны по 90°, поэтому ∠ADC=90°=∠CBA.
Треугольник ADC - равнобедренный (DA=DC) и прямоугольный (∠ADC=90°), поэтому углы при его основании равны по 45°. ∠DAC=45°=∠DCA
Треугольник ABC - прямоугольный (∠CBA=90°), так же 2AB=AC. Угол лежащий напротив катета, который вдвое меньше гипотенузы равен 30°, поэтому ∠BCA=30°. Сумма острых углов в прямоугольном треугольнике составляет 90°, поэтому ∠BАС=60°.
∠BAD = ∠BAC+∠DAC = 60°+45° = 105°
∠BCD = ∠BCA+∠DCA = 30°+45° = 75°
ответ: ∠BAD=105°; ∠BСD=75°.
1) уг АСВ = 180 - (10+4) = 180-14 = 166* ( по т о сумме углов в тр)
уг ВСЕ = 10+4 = 14* ( по св-ву внешнего угла тр)
уг ВСД = 14:2 = 7 * ( по опр биссектрисы угла)
2) уг ДВС = 180-10 = 170* ( по св-ву смежных углов)
3) тр СВД = тр СЕД ( по двум сторонам и углу м/д ними ВС=СЕ по усл, СД - бисс угла ВСЕ; СД - общая сторона) ⇒уг ВДС= уг ЕДС
4) тр СВД в нём: уг ДСВ=7* ( из1), уг ДВС= 170* ( из 2) ⇒ уг ВДС = 180-(170+7 ) = 3*
5) уг ВДС = уг ЕДС( из 3), ⇒ уг ВДЕ = уг ВДС * 2 ; уг ВДЕ = 3*2 = 6 градусов.
Задача 2
1) уг АСВ = 180-(48+19)=113* ( по т о сумме углов в тр)
уг ВСЕ = 48+19 =67 * ( по св-ву внешнего угла тр)
уг ВСД = 67:2 = 33,5 * ( по опр биссектрисы угла)
2) уг ДВС = 180-48 = 132* ( по св-ву смежных углов)
3) тр СВД = тр СЕД ( по двум сторонам и углу м/д ними ВС=СЕ по усл, СД - бисс угла ВСЕ; СД - общая сторона) ⇒уг ВДС= уг ЕДС
4) тр СВД в нём: уг ДСВ=33,5* ( из1), уг ДВС= 132* ( из 2) ⇒ уг ВДС = 180-(132+33,5 ) = 14,5*
5) уг ВДС = уг ЕДС( из 3), ⇒ уг ВДЕ = уг ВДС * 2 ; уг ВДЕ = 14,5*2 = 29 градусов.