Определение. Расстояние от точки до прямой
равно длине перпендикуляра, опущенного из точки на прямую
Объяснение:
Если задано уравнение прямой Ax + By + C = 0, то расстояние от точки M(Mx, My) до прямой можно найти, используя следующую формулу
d = |A·Mx + B·My + C|
√A2 + B2
● Найти расстояние между прямой 3x + 4y - 6 = 0 и точкой M(-1, 3).
Решение. Подставим в формулу коэффициенты прямой и координаты точки
d = |3·(-1) + 4·3 - 6| = |-3 + 12 - 6| = |3| = 0.6
√32 + 42 √9 + 16 5
ответ: расстояние от точки до прямой равно 0.6.
думаю так;)
Осевое сечение конуса - это равнобедренный треугольник. Следовательно, угол при вершине делится высотой конуса пополам. Тогда в прямоугольном треугольнике, образованном высотой конуса, его радиусом (катеты) и образующей (гипотенуза) Образующая L=2R, так как радиус лежит против угла 30°. Учитывая, что R = (2-L) см (дано), можем написать: L =2*(2-L) см. => L=4-2L, => L=4/3 см.
Тогда R=2/3 см.
Площадь полной поверхности конуса равна сумме площадей основания и боковой поверхности, то есть S = So +Sб, или S=π(R²+R*L). подставляя найденные значения, получим
S = π(4/9+2*4/(3*3)) = 12/9 = 4/3см² = 1и1/3 см².
ответ: S=1и1/3 см².
AR=RC, BT=TC ⇒ RT - средняя линия, RT=AB:2.
OR=OT как радиусы, поэтому O∈OF, где OF - серединный перпендикуляр к RT. Окружность касается AB в т. M, поэтому OM⊥AB.
M∈FO т.к. AB║RT, как ср. линия.
ARFM - прямоугольник, как параллелограмм с прямым угом, поэтому AM=RF=RT:2=(AB:2):2=AB/4
Пусть AB=4x, тогда AM=x и MB=4x-x=3x.
AM:MB=x:3x=1:3
ответ: (0,32; 0,34).