М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Facegga
Facegga
15.08.2021 22:05 •  Геометрия

« На 4 »
Вариант 1
1. Сторона квадрата равна 32 см. Найдите его
диагональ.
2. Диагональ прямоугольника равна 34 см.
Найдите стороны прямоугольника, если их
длины относятся как 15:8.

👇
Открыть все ответы
Ответ:
Димон20143
Димон20143
15.08.2021

1)

дано:

f=5000н

s=1000м

найти: а

решение:

a=f*s

a=5000н*1000м=5000000дж=5мдж

ответ: 5мдж

2)

дано:                                 си:                                   решение:

t=1ч                                 3600с                                 n=a: t

f=120н                                                                     a=f*s

s=1 км                           1000м                               a=120н*1000м=120000дж

найти: n                                                                     n=120000: 3600с=33.3 вт

ответ: 33.3 вт

3)

дано:

m=30 кг

s=h=20 м

u=2м/c

найти: n

решение:

n=a: t

a=f*s

t=u: s

t=20м: 2м/с=10c

f=m*g

f=30 кг*10н/кг=300h

a=300h*20м=6000дж

n=6000дж: 10с=600 вт

ответ: 600 вт

4)

m=300 кг

s=h=16 м

g=10н/кг

найти: а

решение:

а=f*s

f=m*g

f=300 кг*10 н/кг=3000н

а=3000н*16 м=48000дж=48кдж

ответ: 48кдж

5)

дано:                     си:                   решение:

s=100м                                           n=a: t

t=6,25 с                                           а=f*s

fт=3кн                 3000н             fт=f

найти: n                                         а=3000н*100м=300000дж 

                                                        n=300000дж: 6.25с=48000вт=48квт

ответ: 48квт

 

4,5(72 оценок)
Ответ:
sasavotchel
sasavotchel
15.08.2021
Строго говоря, теорема Птолемея дает необходимое и достаточное условие того, что около четырехугольника можно описать окружность. Но если честно, я ни разу не встречал задачу, в которой пришлось бы использовать достаточность. То есть всегда бывает дано, что четырехугольник вписан в окружность, и отсюда делается соответствующий вывод. Предлагаю в таком виде теорему и формулировать.

Теорема Птолемея.  Если четырехугольник ABCD вписан в окружность, то произведение диагоналей равно сумме произведений противоположных сторон

                               AC·BD=AB·CD+AD·BC.

Меня всегда удивлял тот факт, что в этой теореме приходится перемножать противоположные стороны. Как-то далеко друг от друга они расположены. Вот если бы соседние перемножались, то никакого предубеждения у меня не возникало бы. Это и дало толчок к моему доказательству. 

Найдем площадь ABCD двумя

Во-первых, эта площадь равна половине произведения диагоналей на синус угла между ними - эта формула, как мне кажется, школьникам должна быть известна.

Доказывается она либо разбиением четырехугольника диагоналями на 4 треугольника, либо более красиво - рассматривая его как половину (по площади) параллелограмма, чьи стороны параллельны диагоналям четырехугольника и проходят через его вершины, 

Если обозначить угол между диагоналями буквой Ф, то 

                                S=(1/2)AC·BD·sin Ф

Угол Ф - это угол между хордами AC и BD, а он, как известно из школьной программы, равен полусумме дуг AB и CD, высекаемых этими хордами. Через вписанные углы он выражается в виде суммы углов BCA и CBD. Запомним это. 

Во-вторых, более или менее естественно попробовать сосчитать площадь ABCD как сумму площадей двух треугольников, скажем ABC и ADC, но в этом случае мы будем получать произведения соседних сторон, а не противоположных. Выйдем из положения не совсем обычным Отрежем от четырехугольника треугольник ABC (останется нетронутым треугольник ADC) , перевернем ABC другой стороной и "приклеим" на старое место. Если Вы не любите "играть в бирюльки" и хотите "математическое рассуждение", то вот оно. Рассмотрите диаметр окружности, перпендикулярный AC, и рассмотрите точку B', симметричную точке B относительно этого диаметра. Конечно, она снова лежит на окружности, при этом AB=CB'; BC=B'A. Иными словами, мы получили четырехугольник AB'CD, площадь которого равна площади старого, с теми же сторонами, но теперь те стороны, которые были противоположными, стали соседними. Разобьем четырехугольник AB'CD на два треугольника так, чтобы их сторонами были бывшие противоположные. Тогда 

S_(ABCD)=S_(AB'CD)=S_(AB'D)+S_(B'CD)=
(1/2)AB'·ADsin DAB'+(1/2)B'C·CDsin B'CD

Во вписанном четырехугольнике, как известно, сумма противоположных углов равна 180°, значит синусы этих углов равны, поэтому 

S_(ABCD)=(1/2)(AB'·AD+B'C·CD)sin DAB'=
(1/2)(BC·AD+AB·CD)sin (DAC+CAB')=
(1/2)(BC·AD+AB·CD)sin (DBC+BCA)=
(1/2)(BC·AD+AB·CD)sin Ф

(углы DAC и DBC опираются на одну дугу и поэтому равны,
углы CAB' и BCA опираются на равные хорды B'C и AB и поэтому равны). 

Сравнив две полученные формулы для площади ABCD, получаем искомую формулу.

Пример на использование  теоремы Птолемея. 

Четырехугольник ABCD вписан в окружность, AB=1, AC=2, AD=6/5, ∠ADC=90°. Найти BD.

Решение. ∠ADC=90°⇒∠ABC=90°, то есть ABCD разбит диагональю AC на два прямоугольных треугольника. С теоремы Пифагора находим неизвестные катеты этих треугольников: BC=√3; CD=8/5.
По теореме Птолемея BD·AC=AB·CD+BC·AD;
2BD=8/5+6√3/5; BD=(4+3√3)/5

Заканчивая сей опус, хочу извиниться за то, что не сейчас сделать чертеж - очень много дел запланировано на этот вечер. Если кто-нибудь сделает мне его - отдам все заработанные на этой задаче .)))
Теорема птолемея с доказательством. альтернативные (нестандартные) доказательства. четкие и разборчи
4,8(65 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ