Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Я решила по своему решению , то есть попроще . ну вот как то так 1) Найдем координаты векторов: AB{-1;3}; CD{1;-3} Так как -1/1=3/(-3), то векторы коллениарны. 2) Найдем длины векторов AB и CD: |AB|=√(1+9)=√10 |CD|=√(1+9)=√10 Так как отрезки AB и CD параллельны и равны, то четырехугольник ABCD- параллелограмм. Найдем длины диагоналей ABCD |АС|=√(25+25)=5√2 |BD|=√(49+1)=5√2 А если у параллелограмма диагонали равны, то это прямоугольник.осле это нужно разделить соответствующие координаты радиус-вектора АВ на соответствующие координаты радиус-вектора CD, если отношение везде одинаковое, то векторы коллинеарны
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.