пусть в треугольнике АВС угол С-прямой, АА1иСС!-биссектрисы, АА1 пересекает СС1 в точке О. биссектриса делит угол пополам поэтому угол АСС1=углу ВСС1=45градусов. По условию угол АОС1=70градусов. угол АОС1-внешний к треугольнику АСО. По свойству он равен сумме внутренних углов не смежных с ним, 45 градусов + угол САО=70градусов, угол САО=70градусов - 45градусов=25градусов, АА1-биссектриса, значит угол САА1=углу ВАА1=25градусов, угол А=25градусов+25градусов=50градусов, сумма острых углов прямоугольного треугольника = 90 градусов, поэтому угол В= 90градусов -50градусов=40градусов
ответ 50градусов и 40градусов
Каждое боковое ребро составляет с плоскостью основания угол в 45° - следовательно, все ребра равны, а их проекции равны радиусу описанной около основания пирамиды окружности, Основание высоты пирамиды - центр О описанной окружности. . Величина её радиуса АО равна 2/3 высоты основания.
AH=AB•sin60°=4√3/2=2√3
Высота МО перпендикулярна основанию
∆АМО - прямоугольный, острый угол МАО=45°, следовательно, второй АМО=45°, и высота пирамиды МО=АО=4/√3
Формула объёма пирамиды V=S•h:3
S(∆ABC)=AB²•√3/4=16√3/4=4√3