Дан ромб АВСД. диагональ АС пересекает ВД в т.О
АС-меньная диагональ.УголВ=углу Д=60градусов.
Диагонали ромба делят углы пополам=> уголАДО=60:2=30градусов
диагонали ромба перпендикулярны => треугольник АОД прямоугольный.
Катет, лежащий напротив угла 30 градусов равен половине гипотенузы => АО=49:2=24,5
Диагонали ромба точкой пересечения делятся пополам => АС=2*АО=2/24,5=49
Можно и другим
Треугольник АСД - равносторонний, т.к. он равнобедренный (АД=ДС по св-вам ромба), углы при основании равны, а третий угол =60градусов => углы при основании тоже по 60 градусов => АД=АС=49
хорда AB, центр О и тогда угол AOB=60гр. и треуг. AOB равносторонний., АО=8*sqrt(2)
длина дуги=p*R*60/180=8*sqrt(2)*p/3
площадь сектора=p*R^2*60/360=p*(64*2)/6=64p/3