SO перпендикуляр к плоскости многоугольника. Рассмотрим треугольники SOM, SOQ, SOP, SON. Они все равны (прямоугольный, гипотенузы равны, а катет общий), тогда отрезки OM, OQ, OP, ON равны. Наконец, по теореме о трех перпендикулярах OM перпендикулярно AB, OQ - AD, OP - CD, ON - BC. Т.к. длины отрезков равны, а расстояние от точки до прямой измеряется по перпендикуляру, опущенному из этой точки на прямую, то О равноудалена от сторон многоугольника. Т.к. О принадлежит плоскости многоугольника, то О - центр вписанной окружности, ч.т.д.
Диагонали равнобедренной трапеции равны, поэтому oc: ao=ob: do=2: 5 и, так как ∢boc=∢aod, то δaod∼δboc (по второму признаку подобия треугольников: две стороны одного треугольника пропорциональны двум сторонам другого и углы, лежащие между этими сторонами равны). 2. так как δaod∼δboc, то adbc=aooc=52. из этого соотношения выражаем и вычисляем большее основание трапеции ad: ad=5×bc2=5×122=30 см. 3. вычисляем ae: ae=ad−bc2=30−122=182=9 см. 4. так как δabe — прямоугольный треугольник, то находим боковую сторону ab по теореме пифагора: ab=be2+ae2−−−−−−−−−−√=122+92−−−−−−−√=144+81−−−−−−−√=225−−−√=15 см. 5. находим периметр равнобедренной трапеции abcd: p(abcd)= 2×ab+ad+bc=2×15+30+12=72 см.