Ну соответственно начертим параллелограм,угол А=60,значит угол В=180-60=120 т.к. сумма углов при одной стороне 180 градусов. За расстояние между вершиной В принимаем перпендикуляр Р ,опущенный на биссектрису К угла С.Угол С=60,так как противоположные углы в параллелограмме равны.
Теперь рассмотрим треугольник ВРК(который прямоугольный(уголВРС=90гр),в этом треугольнике угол ВСР=30 т.к. его делит биссектриса.,а сторона лежащая против угла в 30 гр. равна половине гипотенузы т.е ВР=16:2=8
расстояние от В до биссектрисы =8
Аналогично с вершиной Д ,рассмотрим треугольник СРД ,,ДР =10:2=5 расстояние от Д до биссектрисы =5
Для решения подобных задач есть, если можно так сказать, классический Обозначим вершины трапеции АВСД. Из вершины С параллельно диагонали ВД проводится прямая до пересечения с продолжением АД в точке Е. ВС|| АЕ по условию, ВД||СЕ по построению. ⇒ ВСЕД - параллелограмм, ⇒ ДЕ=ВС=4 см. Тогда АД=5+4=9 см В треугольнике АСЕ известны три стороны. Площадь этого трегугольника равна площади данной трапеции. Действительно, Ѕ (АВСД)=Н*(ВС+АД):2 Ѕ (АСЕ)=Н*(ВС+АД):2 Вычислив по формуле Герона площадь треугольника АСЕ, тем самым найдем площадь трапеции АВСД. Ѕ=√(р*(р-а)*р-b)*(p-c)) где a,b,c - стороны треугольника, р - полупериметр. р=Р:2=(8+7+9):2=12 см Ѕ АВСД=√(12*4*5*3)=√(36*4*5)=12√5 см² или ≈26,8328 см² ---------Вариант решения. Можно опустить высоту СН, выразить ее квадрат по т. Пифагора из прямоугольных треугольников АСН и ЕСН и приравнять это значение, приняв АН=х, НЕ=9-хЗатем по т. Пифагора из любого из треугольников найти высоту и затем площадь трапеции. Этот более длинный и вычислений больше, но именно так, когда это необходимо, можно найти высоту.
За расстояние между вершиной В принимаем перпендикуляр Р ,опущенный на биссектрису К угла С.Угол С=60,так как противоположные углы в параллелограмме равны.
Теперь рассмотрим треугольник ВРК(который прямоугольный(уголВРС=90гр),в этом треугольнике угол ВСР=30 т.к. его делит биссектриса.,а сторона лежащая против угла в 30 гр. равна половине гипотенузы т.е ВР=16:2=8
расстояние от В до биссектрисы =8
Аналогично с вершиной Д ,рассмотрим треугольник СРД ,,ДР =10:2=5
расстояние от Д до биссектрисы =5