М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Vlad2005Mr
Vlad2005Mr
08.06.2021 08:40 •  Геометрия

Решите через дано и решением​

👇
Ответ:
ivanova329
ivanova329
08.06.2021

ответите я уде дала

Объяснение:

4,7(30 оценок)
Открыть все ответы
Ответ:
AннаКрутая
AннаКрутая
08.06.2021
1) Дано:
- правильная треугольная пирамида SABC,
- высота пирамиды SO = Н,
- угол наклона бокового ребра L к основанию равен α .

Примем сторону основания за а.
Проекция AO бокового ребра AS на основание правильной пирамиды равна 2/3 высоты h основания.
Из треугольника ASO находим AO = H/tg α.
Высота h в 1,5 раза больше АО, то есть h = (3/2)H/tg α = 3H/(2tg α),
тогда сторона а основания равна:
а = h/(cos30°) = 3H/(2tg α)/(√3/2) = √3H/tg α.
Площадь основания So = a²√3/4 = 3√3H²/(4tg² α) кв.ед.
Тогда объём пирамиды равен:
V = (1/3)SoH = (1/3)*(3√3H²/(4tg² α))*H = √3H³/(4tg² α) куб.ед.

2) Дано:
 правильная четырёхугольная пирамида SABCД,
- высота пирамиды SO = Н,
- угол наклона бокового ребра L к основанию равен α .

Половина ОА  диагонали АС равна Н/tg α.
Тогда сторона а основания а = Н√2/tg α.
So = a² = 2H²/(tg² α).
V = (1/3)*(2H²/(tg² α))*H = 2H³/(3tg² α).
4,5(40 оценок)
Ответ:
natalya00786
natalya00786
08.06.2021
Отрезки касательных из точки вне окружности до точки касания  с ней равны. 
Следовательно, треугольник АВС равнобедренный и ∠ АВС=∠АСВ. 
Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, стягиваемой хордой.  
 Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис. 
ВК и СМ - биссектрисы равных углов В и С соответственно.
 Угол АВК равен половине угла АВС, и, следовательно, равен  четверти дуги, заключенной между  сторонами   угла АВС, поэтому ВК пересекает дугу ВС в ее середине. 
Аналогично СМ пересекает дугу ВС в ее середине.
Середина дуги ВС - точка пересечения биссектрис треугольника АВС и  потому является центром вписанной в ∆ АВС окружности, что и требовалось доказать. 
Много ! касательные к окружности в точках в и с пересекаются в точке а. докажите, что центр окружнос
4,8(13 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ