Из за того, что один из отрезков равен радиусу, угол треугольника с вершиной в конце этого отрезка - прямой (там получается ромб из 2 отрезков касательных и из 2 радиусов, ясно что это квадрат, поскольку углы между касательными и радиусами в точки касания прямые).
Для прямоугольного треугольника стороны a = 4 + 5 = 9; b = x + 4; c = x + 5; связаны теоремой Пифагора. (x - единственный неизвестный из отрезков, на которые точки касания вписанной окружности делят стороны)
(x + 4)^2 + 9^2 = (x + 5)^2;
4^2 + 9^2 - 5^2 = 2*x;
x = 36;
Стороны 9, 40, 41, это известная Пифагорова тройка (наподобие 3,4,5 или 5,12,13)
Диагонали трапеции делят ее на 4 треугольника. Треугольники, прилегающие к основаниям трапеции, подобны по первому признаку подобия: "Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны", т.к <CAD=<ACB, а <BDA=<DBC как внутренние накрест лежащие при параллельных прямых AD и ВС и секущих АС и ВD соответственно. Итак, треугольники АОD и СОВ подобны с коэффициентом подобия ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7. ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.
Из за того, что один из отрезков равен радиусу, угол треугольника с вершиной в конце этого отрезка - прямой (там получается ромб из 2 отрезков касательных и из 2 радиусов, ясно что это квадрат, поскольку углы между касательными и радиусами в точки касания прямые).
Для прямоугольного треугольника стороны a = 4 + 5 = 9; b = x + 4; c = x + 5; связаны теоремой Пифагора. (x - единственный неизвестный из отрезков, на которые точки касания вписанной окружности делят стороны)
(x + 4)^2 + 9^2 = (x + 5)^2;
4^2 + 9^2 - 5^2 = 2*x;
x = 36;
Стороны 9, 40, 41, это известная Пифагорова тройка (наподобие 3,4,5 или 5,12,13)