по правилу треугольника сумма любых двух сторон треугольника больше третьей
пусть х третья сторона треугольника;
тогда
3.7+х>9.4;
9.4+х >3.7
3.7+9.4> х
из третьего условия следует, что х меньше 13.1;
а из первого х >5.7, а
значит, 5.7<х<13.1 , второе условие при этом ограничении справедливо.
Все вычисления в дециметрах производились.
И все же склонен к мысли о том, что задача звучит не совсем корректно, поскольку, если бы нужно было найти наибольшее и наименьшее целые, то был бы ответ на Ваш вопрос 13 и 6, а так ответ остается открытым.
AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см.
обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh.
По теореме Пифагора для треугольников ABB₁ и ADD₁:
{ AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁².
{ x²+h² =13² ; (7x)² +h²=37².
Вычитаем из второго уравнения системы первое
(7x)² -x² =37² -13²;
48x² =(37-13)(37+13) ;
2*24x² =24*2*25⇒x =5 ;
h =√(13² -5²) =12.
S бок =16xh =16*5*12 =16*60 =960 (см²).
ответ: 960 см².