Тогда ∠ACB=180°-∠CAD-∠CBE=112°, но ∠ACB=∠ACD+∠DCE+∠ECB
2) Треугольник ADC - равнобедренный с основанием АС, так как AD=DC по условию. Тогда ∠DCA=∠CAD=42°, так как это углы при основании равнобедренного треугольника и ∠CAD=42° по условию.
3) Треугольник CEB - равнобедренный с основанием CB, так как CE=EB по условию. Тогда ∠ECB=∠CBE=26°, так как это углы при основании равнобедренного треугольника и ∠CBE=26° по условию.
Полное условие задачи: Один из острых углов прямоугольного треугольника равен 38°. Найдите острый угол между гипотенузой и биссектрисой прямого угла.
Пусть в треугольнике АВС ∠С = 90°, СМ - биссектриса. Рассмотрим ΔАСМ: ∠САМ = 38° по условию, ∠АСМ = 90° / 2 = 45° так как СМ биссектриса. ∠ВМС = ∠САМ + ∠АСМ = 38° + 45° = 83° так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Углом между прямыми считается меньший из образовавшихся углов, значит угол между гипотенузой и биссектрисой прямого угла 83°.
44°
Объяснение:
1) Сумма углов треугольника=180°
∠CAD=42°, ∠CBE=26°
Тогда ∠ACB=180°-∠CAD-∠CBE=112°, но ∠ACB=∠ACD+∠DCE+∠ECB
2) Треугольник ADC - равнобедренный с основанием АС, так как AD=DC по условию. Тогда ∠DCA=∠CAD=42°, так как это углы при основании равнобедренного треугольника и ∠CAD=42° по условию.
3) Треугольник CEB - равнобедренный с основанием CB, так как CE=EB по условию. Тогда ∠ECB=∠CBE=26°, так как это углы при основании равнобедренного треугольника и ∠CBE=26° по условию.
4) ∠ACD+∠DCE+∠ECB=112°
42°+∠DCE+26°=112°
∠DCE=44°