Боковое ребро правильной треугольной пирамиды равно 30, апофема равна 24. Найдите площадь сечения, проходящего через середину высоты пирамиды параллельно боковой грани
Расскажу 3-ю. Пусть даны точки А и В и прямая m. 1) Построим точку D, в которой искомая окружность будет касаться прямой m. a) Если AB||m, то D - пересечение серединного перпендикуляра к АВ с прямой m, и тем самым D построена. б) Пусть прямая АВ пересекает m в точке С и пусть B лежит между А и С. Тогда по свойству касательной и секущей должно быть СD²=АС·BC. Строим окружность с диаметром AC, а через B проводим перпендикуляр к AC до пересечения с этой окружностью в точке E. Тогда AEC - прямоугольный треугольник и поэтому EC²=АС·ВС. На m откладываем отрезок CD равный EC, так чтобы угол ACD был острый. Тем самым D найдена.
2) Строим серединные перпендикуляры к AD и к BD. Их пересечение и есть центр искомой окружности.
P.S. Если AB перпендикулярно m и A,B не лежат на m, то такую окружность, ясное дело, построить нельзя.
AB = √((2+3)²+(3+2)²+(4-5)²) = √(5²+5²+1²) = √51
AC = √((2-3)²+(3+4)²+(4+4)²) = √(1²+7²+8²) = √114
ВС = √((-3-3)²+(-2+4)²+(5+4)²) = √(6²+2²+9²) = √121 = 11
Полупериметр
p = (√51 + √114 + 11)/2
Площадь по формуле Герона
S² = p*(p-a)*(p-b)*(p-c)
S² = (√51 + √114 + 11)/2 * ((√51 + √114 + 11)/2-√51) * ((√51 + √114 + 11)/2-√114) * ((√51 + √114 + 11)/2-11)
S² = 1/2⁴*(√51 + √114 + 11) * (-√51 + √114 + 11) * (√51 - √114 + 11) * (√51 + √114 - 11)
Первые две скобки
(√51 + √114 + 11) * (-√51 + √114 + 11) = (√114 + 11)² - (√51)² = 114 + 22√114 + 121 - 51 = 184 + 22√114
Вторые две скобки
(√51 - √114 + 11) * (√51 + √114 - 11) =
= 51 + √51*√114 - 11√51
- √114*√51 - 114 + 11√114
+ 11√51 + 11√114 - 121
= - 184 + 22√114
---
S² = (22√114)² - 184² = 484*114 - 33856 = 21320
S = 1/2⁴ * 21320 = 2665/2
S = √(2665/2)