По двум сторонам решите прямоугольный треугольник АВС, у которого угол С = 90 градусов (неизвестную сторону найдите с точностью до сотых см, углы с точностью до градуса). АС = 6 см; ВС = 5 см
Точки, лежащие на коорданатной плоскости OXY, имеют координаты (x,y,0), где x,y - какие-то действительные числа. Значит, чтобы точка была удалена от плоскости OXY на 4, нужно, чтобы её аппликата (координата по оси OZ) была равна 4 или -4. Аналогично, чтобы точка была удалена от плоскостей OXZ и OYZ на 4, нужно, чтобы её координаты по осям OX и OY были равны 4 или -4. Значит, существует 8 точек, удовлетворяющих условию: (4,4,4), (4,4,-4), (4,-4,4), (4,-4,-4), (-4,4,4), (-4,4,-4), (-4,-4,4), (-4,-4,-4).
Обозначим отрезки, на которые высота делит гипотенузу, за x и y, причём x<y. Высоту обозначим за h. Высота делит треугольник на два прямоугольных треугольника. Площадь одного из них равна 1/2xh, а площадь другого 1/2yh, так как в каждом катетами является высота и один из отрезков, на которые разделена гипотенуза. Зная, что 1/2xh=6, 1/2yh=54, получаем 9/2xh=54, 9/2xh=1/2yh, откуда 9x=y. Известно, что h²=xy (верно для высоты прямоугольного треугольника, проведённой к гипотенузе), значит, h²=x*9x=9x², то есть h=3x. Теперь рассмотрим треугольник с площадью 6. Его катеты равны x и 3x, значит, площадь равна 1/2*x*3x=3/2x². То есть, 3/2x²=6 и x=2. Тогда один из отрезков равен 2, а второй равен 9x=9*2=18. То есть гипотенуза разделена на отрезки 2 и 18, тогда её длина равна 2+18=20.