Мы такое делали))) Значит рисуешь напримет прямоугольный треугольник, проводишь там 3 биссекрсисы( 1 биссекриса из 1 угла, 2 из2, и 3 из 3) Где они пересеклись ставишь точку и рядом букву "О" например. (биссектриса делит угол пополам). так же с остальными треугольниками.
медианы соединяют вершину с серединой противоположной стороны. Вот так же как и бессиктриссы делаешь, только тут чертишь медианы.
Высота- это перпендикуляр проведенный из вершины на противоположную сторону. Точно также делаешь!
И 4 наверное серединный перепендикуляр. Находишь середину на каждой стороне и проводиш перпендикуляр. И все 3 треуг. так же)))
Могу показать нечерченный)))
Напиши если что)
1 ряд -медианы
2- высоты
3- биссектрисы
Объяснение:
№1 Равны прямоугольные тр-ки ABD и ADC (по гипотинузе, которая у них общая и прилежащему углу)
№2 Равны прямоугольные тр-ки ABD и BDC (по катету и прилежащему углу) . Тр-к АВС-р/б (по признаку, углы при основании равны), следовательно BD-высота и мед. и AD=CD
№3 Равны прямоугольные тр-ки ABЕ и ЕCD (по гипотинузе и прилежащему углу), т.к. <BEA=<CED-вертик, а гипот. равны по условию.
Равны прямоугольные тр-ки ABD и ADC (по гипотинузе, которая у них общая и прилежащему углу). Тр-к АЕD-р/б, следовательно угла при основании <EAD=<EDA.
№4 АВ=ВС/sin30=8
№5 ВС=АВ*cos60=5
№6 Это р/б.прямоугольный треугольник,т.к. углы при гипот равны. BC=AC=6
Окружность, описанная около треугольника
Окружность называется описанной около треугольника, если она проходит через все его вершины.
Теорема.
Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон.
Доказательство.
Пусть ABC – данный треугольник и O – центр окружности описанной около данного треугольника. Δ AOB – равнобедренный ( AO = OB как радиусы) . Медиана OD этого треугольника одновременно является его высотой. Поэтому центр окружности лежит на прямой, перпендикулярной стороне AC и проходящей через ее середину. Так же доказывается, что центр окружности на перпендикулярах к другим сторонам треугольника. Теорема доказана.
Объяснение: