Один из углов равнобедренного треугольника равен 108 градусов. Найти соотношение длин двух биссектрис неравных углов.
Сделаем рисунок.
Пусть данный треугольник АВС, АВ=ВС
Углы при основании АС равны (180º -108º):2=36º, значит, нужно найти соотношение длин биссектрис ∠В и∠С, т.к. они не равны.
Биссектрисы ВН и СК делят углы пополам.
∠ КВО=108º:2=54º
∠ ВСК=36:2=18º
В ∆ ВКС ∠ ВКС=180º-108º-18º=54º
∠ КВО=108º:2=54º
∠ ВКС=∠ КВО ⇒
∆ КОВ - равнобедренный.
Проведем НМ параллельно АВ.
∠ ВНТ=∠КВН=54º как накрестлежащие при пересечении параллельных прямых секущей
углы КТН = ВКТ=54º на том же основании ⇒
∆ НОТ - равнобедренный.
ВН=ВО+ОН, КТ=КО+ОТ и оба состоят из суммы равных отрезков. ⇒
ВН=КТ.
НМ || АВ по построению, а АН=НС по условию.⇒
НМ - средняя линия и делит СК пополам.
ТС=ТК=ВН
СК= 2 ВН
СК:ВН=2:1.
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см