Так как заданий много, пишу кратко. Извиняйте, Вам жалко пунктов, а мне времени.
1) Пусть меньшая сторона - х см, тогда вторая - (х+13) см.
х+х+13=47
2х=34
х=17
ответ. 17 см.
2) Данный прямоугольник является квадратом - все стороны равны.
d=a√2
a = d/√2 = 16√2 / √2 = 16.
Р=4а=4·16=64
ответ. 64.
3) 7х+5х=180
12х=180
х=15
7·15=105°, 5·15=75°
105°-75°=30°
ответ. 30°.
4) углы, которые соединяет диагональ, равны по 23°+38°=61°
два других угла равны по 180°-61°=119°
ответ. 119°
5) 154° - это сумма противоположных углов. Так как они равны, то каждый из них равен 154°:2=77°.
Два других равны по 180°-77°=103°
ответ. 103°
6) Третий угол равен 180°-123°=57°, четвертый угол - 180°-71°109°.
Меньший из всех - 57°.
ответ. 57°.
Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н.
Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды SABCD.
Так как пирамида правильная, в основании - квадрат.
Диагональ квадрата равна в нашем случае 6√2.
Ее половина ОС=3√2.
Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14.
Необходимо найти перпендикуляр SH к плоскости BCMN.
Вариант решения - через подобие прямоугольных треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые.
Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF.
Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC).
Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO).
Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG.
FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно, SE=SO-EO=2√14.
EF находим из треугольника EOF по Пифагору:
EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23.
ответ: SH=6√14/√23.