Если катет и противолежащий острый угол одного прямоугольного треугольника соответственно равны катету и противолежащему острому углу другого прямоугольного треугольника, то такие треугольники равны.
В прямоугольном треугольнике катету противолежит острый угол ( прямой противолежит гипотенузе) и сумма острых углов 180°-90°=90°.
Поэтому: если противолежащий катету острый угол одного прямоугольного треугольника равен противолежащем острому углу другого, то прилежащие к равным катетам острые углы также равны
К равным катетам этих треугольников прилежат равные углы: прямой ( по условию) и найденный острый.
Такие прямоугольные треугольники равны по 2-му признаку равенства треугольников, т.е. по стороне и прилежащим к ней углам.
Центральный угол измеряется дугой, на которую он опирается.
Вписанный угол измеряется половиной дуги, на которую он опирается, и равен половине центрального угла, опирающегося на ту же дугу.
Вписанные углы, опирающиеся на одну и ту же дугу, равны между собой.
Вписанный угол, который опирается на диаметр, прямой, т.е. равен 90°
Центральный угол в окружности - это плоский угол с вершиной в ее центре.
Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называют вписанным в окружность.