Если есть проблемы с отображением, смотрите снимок ответа, который приложен к нему. ==== Смотрите рисунок, приложенный к ответу. Рассмотрим . Из условия ясно, что он — прямоугольный (так как ). — гипотенуза, — искомый катет, Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть: Отсюда: Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
Как мы выяснили чуть выше . Заменяем и получаем:
Немного поколдуем:
Отсюда найдем :
Теперь напомню зачем нам нужно было
Подставляем вместо новую подстановку:
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
Пусть трапеция АБСД, О-точка пересечения диагоналей, К- точка пересечения продолжений боковых сторон. Проведем через точку О отрезок МН параллельный большему основанию АД. Достаточно доказать , что ОМ=ОН, тогда КО -луч на котором лежит медиана треугольника КАД к основанию АД. (Медиана,как известно, - геометрическое место точек , которые делят пополам отрезки заключенные между сторонами КА и КД и параллельные АД). Докажем , что ОМ=ОН. Рассмотрим Треугольники БАД и БМО. Они , очевидно подобны и коэффициент подобия равен альфа =отношению высот этих тпеугольников. Т.е МО=альфа*АД. Но тоже самое можно написать и для треугольников САД и СОН. Получим ОН=альфа * АД Значит ОМ=ОН, что и доказывает утверждение.
Поясняю, что такое альфа : альфа -коэффициент подобия. Здесь: отношение высоты треугольника БМО к высоте треугольника БАД. Понятно, что у треугольников СОН и САД коэффициент подобия такой же, так как высоты у них такие же.
====
Смотрите рисунок, приложенный к ответу.
Рассмотрим . Из условия ясно, что он — прямоугольный (так как ). — гипотенуза, — искомый катет,
Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть:
Отсюда:
Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
Как мы выяснили чуть выше .
Заменяем и получаем:
Немного поколдуем:
Отсюда найдем :
Теперь напомню зачем нам нужно было
Подставляем вместо новую подстановку:
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
Найдем, наконец,
Это ответ.