(-1÷2÷5)= -0,1
-1÷2= -0,5
-0,5÷5= -0,1
ответПусть дан отрезок АС.
Чтобы с линейки и циркуля построить его середину М, нужно:
1) Из А и С как из центров циркулем провести равные окружности радиусом несколько больше половины этого отрезка,( на глаз это определить несложно), чтобы они могли пересечься.
2) Окружности пересекутся по обе стороны от АС. в точках В и Д ( можно обозначить иначе).
Соединить точки пересечения окружностей.
3) ВД пересечет АС в т.М, которая и является серединой данного отрезка АС.
------
Доказательство.
АВ=ВС=СД=ДА=ВК – радиусы равных окружностей =>
АВСД - ромб, АС и ВД его диагонали. Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. =>АМ=МС,
Середина М отрезка АС построена.
Если все боковые ребра пирамиды равны, то вершина пирамиды проецируется в центр окружности описанной около основания. В основании прямоугольный треуг-к, значит центр окружности является серединой гипотенузы. Рассмотрим основание пирамиды треуг-к АВС. По т. Пифагора
АВ^2=BC^2+AC^2
АВ^2=6^2+8^2 = 36+64=100
AB=10
AO=10:2=5 (cм) - радиус описанной окружности.
SO - высота пирамиды. S - вершина пирамиды.
Рассмотрим треуг-к АОВ. Угол О=90
По т. Пифагора
SВ^2=ОB^2+SО^2
SО^2=SВ^2-ОB^2
SО^2=13^2-5^2 = 169-25=144
SО=12(см)
ответ:12(см)
(-1 :2 :5)=0,1