Объяснение:
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
Теорема: треугольники подобны, если 2 угла одного треугольника равны двум углам другого.
Но, если у треугольников равны 2 угла, то и третьи углы тоже равны. Подумайте.
ВЕРНО.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
Диагонали у четырехугольников перпендикулярны в ромбе, квадрате и дельтоиде. В некоторых случаях и в других четырехугольниках, например в трапеции. Из них прямоугольником является только квадрат.
НЕ ВЕРНО
3) У равностороннего треугольника есть центр симметрии.
Есть три оси симметрии (это его медианы, высоты, биссектрисы, что в этом случае одно и то же), но, как и у любого треугольника НЕТ ЦЕНТРА СИММЕТРИИ.
НЕ ВЕРНО.
4) Если в параллелограмме диагонали равны, то этот параллелограмм — квадрат.
Нет, этот параллелограмм может быть и прямоугольником.
НЕ ВЕРНО.
6
если < 1 = < 2, то a || b (по свойств паралельности прямых
если < 2 + < 3 = 180°, то c || b (по тому - же свойству)
т. к. a || b и c || b, то a || c (по аксиоме паралельных прямых)
7
m || n || k (ничего доказывать не надо)
8 сам не знаю
9
т. к. a || b, то < 1 + < 2 = 180°
мы знаем, что < 1 больше < 2 в 2 раза. получаем уравнение, где 2x = < 1, x = < 2
2x + x = 180
3x = 180
x =60
< 2 = 60°, < 1 = 60° × 2 = 120°
остальные углы можно найти по свойству равенства углов и смежных углов