Сумма всег углов тр-ка равна 180 градусов, поэтому разделим 180 пропорционально числам 2,3,4.
1) 180 : (2+3+4) =20 градусов приходится на одну часть
2) 20*2 =40 градусов первый угол
3) 20*3 =60 градусов -второй угол
4) 20*4 =80 градусов третий угол
Вторая задача
1) Угол между касательной АС и хордой АВ равен половине дуги АВ, то есть дуга АВ содержит 75*2 =150 градусов
2) Центральный угол АОВ измеряется дугой АВ и равен 150 градусов
ответ <АОВ =150 градусов
Третья задача
Треугольники равны по стороне АС ( общая сторона) и двум углам, так как
1) <ВАС = <АСВ ( в равнобедренном тр-ке углы при основании равны)
2) <ДАС =<АСЕ ( по свойству биссектрисы, она делит угол пополам)
Пусть сторона параллелограмма на АВ равна х, вторая у.
Остаток стороны АВ равен 4 - х.
Из подобия треугольников запишем: (4 - х)/у = 4/10 = 2/5.
Отсюда получаем зависимость сторон х и у: 2у = 20 - 5х,
Сократим на 2: у = 10 - 2,5х.
Высота параллелограмма равна х*sin 30° = x /2.
Получаем зависимость площади параллелограмма от переменной х:
S = (x/2)*y = (x/2)*( 10 - 2,5х) = 5x - 1,25x².
Производная этой функции равна: y' = 5 - 2,5x.
Приравняем нулю: 5 - 2,5х = 0.
Отсюда х = 5/2,5 = 2. Это точка экстремуму.
Определим знаки производной левее и правее этой точки для определения характера экстремума.
х = 1,5 2 2,5
y' = 1,25 0 -1,25 .
Как видим, в точке х = 2 максимум (переход с + на -).
ответ: S = 5x - 1,25x² = 5*2 - 1,25*4 = 10 - 5 = 5 кв.ед.