Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
Обозначим трапецию как ABCD. Сторона перпендикулярная основаниям АВ, ВС - верхнее основание, AD - нижнее основание, CD - большая боковая сторона. Опустим перпендикуляр из вершины С к основанию AD и отметим точку пересечения как Е. Получили прямоугольный треугольник СЕВ. По теореме Пифагора находим СЕ СЕ²=CD²-DE² DE=AB-AE (а АЕ=ВС, так как трапеция прямоугольная) DE=17-5=12 см CE²=15²-12²=81 см Теперь из треугольника АВС можем найти диагональ АС по теореме Пифагора: АС²=АВ²+ВС² AB=СЕ, поэтому можем записать АС²=АВ²+СЕ² АС²=81+5²=81+25=106 АС=√106
28 см
Объяснение:
Сума двох сторін трикутника має бути більшою за третю сторону.