№1. Угол между касательной и радиусом, проведенным к ней равен 90 градусов, поэтому ОА будет гипотенузой в треугольнике АВО, а ОВ - катетом. Дальше из теоремы Пифагора: АВ= и того, АВ=8 ответ:8см. №2. уголA+уголB+уголC=180°( по теореме о сумме углов в треугольнике) Уравнение: Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С Х+3Х+5Х=180 9Х=180 Х=180:9 Х=20° 20*3 равно=60градусов ответ: угол В= 60 градусов, угол С= 100 градусов. №3. Длина диаметра 20 см. Концы диаметра и данная точка окружности образуют вписанный угол, опирающийся на диаметр. Вписанный угол, опирающийся на диаметр, прямой. Значит, получившейся треугольник будет прямоугольным. Расстояние от другого конца диаметра до данной точки найдем по теореме Пифагора, как длину катета прямоугольного треугольника: =(20-16)(20+16)=4*36=144 см ответ:12 см.
1) Сумма внешнего и внутреннего угла многоугольника равна 180° ⇒ следовательно внутренний угол многоугольника равен 180° - 20° = 160°
Величина внутреннего угла правильного многоугольника зависит от количества его сторон n и выражается формулой:
Найдем при каком n угол будет равен 160°:
Т.е. угол в 160° будет у правильного 18-угольника
2) Радиус окружности описанной около правильного треугольника R и сторона a треугольника связаны соотношением:
Подставим заданное значение стороны:
Следовательно, радиус окружности, описанной около этого треугольника равен 6 см
3) Градусная мера всей окружности равна 360°, а радианная мера 2π, следовательно градусная мера дуги равна:
а радианная:
Длину дуги найдем как 8/15 от длины окружности: