М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ДарьяГ22
ДарьяГ22
09.09.2021 11:41 •  Геометрия

18б Буду очень признательна! Одна сторона ромба A B C D принадлежит плоскости α , а его диагонали равны 10 и 24 (Рис.2). Угол между плоскостью ромба и плоскостью α равен 30 ° . Установите соответствие между величинами или отрезками (1-4) и их числовыми значениями (А-Д объясните подробно свой, каждый, выбор ответа...

👇
Ответ:
daniil539
daniil539
09.09.2021

1) 60/13

2) АD=13

3) 60√3

4) 120/13

Объяснение:

ABCD-ромб⇒АС⊥ВD, АО=0,5АС, DО=0,5ВD

АО=0,5АС=0,5·10=5

DО=0,5ВD=0,5·24=12

АС⊥ВD, по теореме Пифагора АD²=АО²+DО²=5²+12²=25+144=169⇒АD=13

2) АВ=ВС=СD=АD=13-сторона ромба

3) Площадь орт.проекции фигуры на плоскость равна произведению площади данной фигуры на косинус угла между плоскостью и данной фигурой.

Площадь ромба по готовой формуле: S=0,5AC·BD=0,5·10·24=120

Площадь орт проекции: s=S·cos((ABCD)∧α)=120·cos30°=120·√3/2=60√3

4) Через точку О - пересечение диагоналей ромба проведём перпендикуляр к стороне ВС, OM⊥BC.

Но так как ВС║AD⇒ME⊥AD, ME⊥BC⇒ME-высота ромба.

Ещё одна формула для нахождения площади ромба

S=ME·AD⇒120=ME·AD=13ME⇒ME=120/13

1) Опустим из точки М перпедикуляр МТ на плоскость α.

МТ⊥α, Е∈α⇒отрезок TE есть орт.проекция отрезка МЕ на плоскости α.

АD⊥МЕ⇒АD⊥ТЕ(теорема о трёх перпендикулярах)

Значить, ∠МЕT=(АВСD∧α)=30°

МТ⊥α, ЕТ∈α⇒МТ⊥ ЕТ⇒∠МТЕ=90°

∠МТЕ=90°,∠МЕT=30°⇒MT=0,5ME=0,5 ·120/13=60/13

Растояние между ВD и пл.α и есть отрезок МТ=60/13

Р.S. Все 4 пункта вычислены. Соответствие это выбор подходящего варианта ответа

1-В

2-А

3-Б

4-Д


18б Буду очень признательна! Одна сторона ромба A B C D принадлежит плоскости α , а его диагонали ра
4,8(70 оценок)
Открыть все ответы
Ответ:

1) 116

2) 62°

3) 416

1) Биссектриса равностороннего треугольника совпадает с медианой и высотой.

Обозначим а - сторона,

h - высота. Равносторонний треугольник равны все стороны и равны углы, причем углы равны 60°.

Рассмотрим треугольник образованный стороной высотой (биссектрисой)

и третьей стороной будет часть стороны на которую опущен треугольник. Рассматриваемый треугольник прямоугольный. И углы соответсвенно равны 90° , 60° и 30°.

Справедливо: а=h/cos30°. a=58×2=116.

2) Величина угла ACB, равна половине угла AOB, который равен 124°. Угол ACB=(124°/2)=

62°.

3)

BC=2×MC; AC=2×NC.

MC=(1/2)×BC; NC=(1/2)×AC

S(ABC)=1/2×AC×BC×sinC,

S(MNC)=1/2×MC×NC×sinC,

Отсюда S(ABC)=4×S(MNC)=4×104

S(ABC)=416

4,5(51 оценок)
Ответ:
Andrey346563545
Andrey346563545
09.09.2021

Площадь трапеции находится по формуле

S = \frac{a+b}{2} \cdot h

где a, b -- основания трапеции, h -- высота.

h = 10 см, S = 240 см² по условию

Пусть меньшее основание равно x см, тогда большее равно (x + 4) см.

Составим уравнение, используя формулу площади трапеции:

\frac{x+(x+4)}{2} \cdot 10=240 \\ \\ \frac{(2x+4) \cdot 10}{2}=240\\ \\ 5(2x+4)=240\\ 10x+20=240\\ 10x=220\\ x=22 cm

Таким образом, меньшее основание BC равно 22 см, а большее AD равно (22+4) = 26 см.

В прямоугольной трапеции одна из боковых сторон равна высоте, то есть AB = 10 см.

Проведём из точки С высоту CH. Тогда HD = AD - BC = 26 - 22 = 4 см

CH = h = 10 см. По теореме Пифагора найдём CD:

CD=\sqrt{CH^2+HD^2}=\sqrt{10^2+4^2}=\sqrt{100+16}=\sqrt{116}=\sqrt{4 \cdot 29}=2\sqrt{29} cm

ответ: 10 см, 22 см, 26 см, 2√29 см


98 . по : площадь прямоугольной трапеции равна 240см2 а её высота равна 10 см.найти все стороны трап
4,6(17 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ