Три точки A, B, C лежат на одной прямой. Известно что: AB=4.3 см, AC=7.5 см, BC=3.2 см. Может ли точка A лежать между точками B и C? Может ли точка С лежать между точками A и B? Какая из трех точек A, B, C лежит между двумя другими?
Решение:
Если точка A лежит между точками B и C, то по свойству измерения отрезков должно быть верно равенство: BC = AB +AC. Подставляем данные: BC = 4.3 + 7.5 ≠ 3.2. Значит, точка A не лежит между точками B и C. Если точка C лежит между точками A и B, то должно быть верно равенство: AB = AC + BC. Подставляем данные: AB = 7.5 + 3.2 ≠ 4.3. Следовательно, точка C не лежит между точками A и B.я не могу понять как так 4.3+7.5=3.2 объясните значит решая эту задачу нужно отнимать я просто прибавляла и ответ был 11.8 а должно быть 3.2
Объяснение:
Разделим тождество на две части и решим каждого:
1+ tg×(180°- a)×sin×(90°-a)×sin a = cos²×(180°- a)
1) 1+ tg×(180°- a)×sin×(90°-a)×sin a
Сначало по формулам приведения переведем тригоном. функции:
1-tg a × cos a × sin a
Дальше,раскрываем тангенс по формуле: tg a =sin a/cos a :
1-sin a/cos a × cos a × sin a
Сокращаем cos a и получаем:
1-sin² a=> по осн. тригоном. тожд. => cos² a
2)cos²×(180°- a)
Воспользуемся формулой приведения:
cos²×(180°- a)= - cos²a
По основ. тригоном.тождеству sin²a+cos²a=1 =>cos²a=1-sin²a :
- cos²a = -(1-sin²a) = -1+sin²a=sin²a-1=cos²a
В первой части тождества получили: cos² a
И во второй части получили: cos² a
Поэтому:
cos² a=cos² a
Ч.т.д