площадь равнобедренного треугольника равняется произведению высоты на половину длины основания. Опускаем в равнобедренном треугольнике высоту b на основание. Получаем 2 одинаковых прямоугольных треугольника, т.к. высота в равнобедренном треугольнике, опущенная на основание является высотой, биссектрисой и медианой одновременно. гипотенузы равны как боковые стороны, высота (b) - она же катет (b) - одна. основание равнобедренного поделено пополам, т.е. катеты равны. Имеем прямоугольный треугольник со сторонами a, b, c, где с - гипотенуза, a и b - катеты катет b противолежит известному углу A. Находим b по формуле: b = c * sin(A) катет a прилежит известному углу А. Находим а по формуле: a = c * cos (A) Находим площадь равнобедренного треугольника по формуле: S = b * a = (c * sin(A)) * (c* cos(A)) = c^2 *sin(A)*cos(A)
по условию дан треугольник прямоугольный
отметим ABC. угол AСB=90 градусов
Sпрямоугольного треугольника=1/2*катет№1* катет№2
так как дано соотношение между катетами подставляем в формулу площади:
120=1/2*12x*5x
120=6x*5x2
120=30x2
x2=4
x=2
отсюда следует: гипотенуза BC=5*2=10
гипотенуза AC=12*2=24
По теореме Пифагора найдём AB гипотенузу:
кв кор(12*12*4 + 5*5*4) = кв кор(144*4+25*4) = кв кор(676) = 26
ответ: 26