1. 1) ∠AOD=∠BOC=130° (вертикальные), значит ∪ ВС=130°(стягивает центральный угол).
2)∪ АВ=∪АС- ∪ВС=180°-130°=50°, значит
∠АСВ =50/2=25 °(вписанный не центральный угол)
2. 1) ∆ АВС- равнобедренный , значит ∠ А=∠С=(180°-177°)/2=1,5°.
2) ∪ ВС=1,5°·2=3° (стягивает вписанный угол), тогда ∠ВОС=3° (центральный угол )
3. 1) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания,
значит ∠ ОКМ=90°-7°=83° .
2) ∆ ОКМ- равнобедренный (ОК=КМ=r) , значит ∠ОКМ=∠ОМK=83°.
4. 1) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания,
значит ∠ ОКМ=90°-84°=6°
2) ∆ ОКМ- равнобедренный (ОК=КМ=r) , значит ∠ОКМ=∠ОМK=6°.
5. ∠ ABC =90°(вписанный), т.к ∪ АС=180° (опирается на диаметр АС). Тогда ∠С=180°-90°-75°=25°
6. 1) ∪ AN=73°·2=146° (стягивает вписанный ∠ NBA). Тогда
∪ NB =∪ AB-∪AN=180°-146°=34°.
2) ∠NMB=34°/2=17° (вписанный не центральный угол)
7. 1) ∆ АОВ- равнобедренный(АО=ОВ=r), значит ∠ОАВ=∠АВО=15°. Тогда ∠ОВС =56°-15°=41°.
2) ∆ ВОС- равнобедренный(ВО=ОС=r), значит ∠ОВС=∠ВСО=41°.
8. ∆ АОВ =∆ СОD (AO=OD=r, CO=OB=r, ∠AОВ =∠CОD-вертикальные ), значит ∠ОАВ =∠ОСD=25°
9 задача:
Дано:
ΔABC; AO=CO; MO=KO.
Доказать что:
ΔABC - равнобедренный.
1.) Рассмотрим ΔAMO и ΔKOC:
1. MO=KO;
2. AO=CO;
3. ∠MOA=∠KOC ( так как эти углы вертикальные);
Дальше ты напротив этих трёх пунктов делаешь фигурную скобку и пишешь: ΔAMO=ΔKOC (по двум сторонам и углу между ними).
2.) AO=CO, следовательно ΔAOC - равнобедренный (так как у равнобедренного треугольника боковые стороны равны)
3.) 1. ∠OAC = ∠OCA (так как ΔAOC - равнобедренный);
2. ∠OAM = ∠OCK (так как ΔAMO = ΔKOC);
3. ∠BAC = ∠OAM + ∠OAC;
4. ∠BCA = ∠OCK + ∠OCA;
Дальше ты опять напротив этих пунктов делаешь фигурную скобку и пишешь:
∠BAC = ∠BCA, следовательно ΔABC - равнобедренный (так как у равнобедренного треугольника углы при основании равны).
ч.т.д.