a)приведу неравенство к основанию 2
1/(2^x)=2^(-x)
если основание показательной функции больше 1, то для степеней
√(2x+3)≥-x (*)
ОДЗ: 2x+3≥0;x≥-1.5
для любого x≥0 неравенство (*) верно
найду корни равенства
√(2x+3)=-x, так как правая часть 0 или положительное число, то x≤0
возведу его в квадрат
2x+3=x^2
x^2-2x-3=0
D=16
x1=(2+4)/2=3-не подходит
x2=(2-4)/2=-1-подходит
тогда методом интервалов
[-1.5][-1]+++[0]
объединяя два выделенных ответа получу
ответ x=[-1;+∞)
b) решается аналогично
ОДЗ x+2≥0;x≥-2
-√(x+2)>-x
умножу неравенство на -1
√(x+2)<x-так как левая часть положительна , то и правая должна быть тоже, значит x>0
решаю равенство возведением в квадрат
√(x+2)=x
x+2=x^2
x^2-x-2=0
D=9
x1=(1+3)/2=2
x2=(1-3)/2=-1 -не подходит
[-2](2)
ответ x=(2;+∞)
в) все неравенство разделю на 6^x, знак его не изменится, так как 6^x>0
3*(2/3)^x+2*(3/2)^x-5<0
пусть t=(2/3)^x>0
3t+2/t-5<0
(3t^2-5t+2)/t<0
3t^2-5t+2<0
D=1
t1=(5+1)/6=1;t2=(5-1)/6=2/3-не подходит
t1=1;(2/3)^x=1;x1=0
t2=(2/3)^x=2/3;x2=1
(0)(1)
ответ x=(0;1)
1. S = 25,5 дм².
2. Cosα = 0,96.
Объяснение:
1. Построим сечение. Для этого проведем из точки О (пересечение диагоналей основания пирамиды - прямоугольника) луч, параллельно боковому ребру AS и на пересечении этого луча с боковым ребром CS обозначим точку Р. Соединив точки В и D с точкой Р, получим треугольник BPD -- сечение пирамиды, проходящее через диагональ BD параллельно боковому ребру AS (так как луч ОР лежит в плоскости сечения и параллелен ребру AS).
Диагонали прямоугольника равны и точкой пересечения делятся пополам.
По Пифагору АС = BD = √(6²+8²) = 10 дм. ОС = АО = BO = OD = 5 дм.
Треугольники ASC и OPC подобны (OP║AS) c коэффициентом подобия k=OC/AC = 1/2. => PC = SC/2.
Опустим из точки Р перпендикуляр РН.
Треугольники OSC и HPC подобны (PH║OS) c коэффициентом подобия k=PC/SC = 1/2. => PH = SO/2, НС = ОС/2.
Проведем из точки С перпендикуляр СТ к диагонали BD. Это высота прямоугольного треугольника BCD, проведенная из прямого угла и по ее свойству CТ = BC*CD/BD = 8*6/10 = 4,8дм.
Проведем из точки Н прямую HQ, параллельно СТ. Тогда HQ⊥BD и по теореме о трех перпендикулярах PQ⊥BD и является высотой треугольника BPD.
Треугольники OCТ и OHQ подобны (HQ║CT) c коэффициентом подобия k=PC/SC = 1/2. => HQ = CT/2 = 4,8/2 = 2,4 дм.
По Пифагору PQ = √(HQ²+PH²) = √(2,4²+4,5²) = √26,01 = 5,1 дм.
Площадь сечения равна S = (1/2)*10*5,1 = 25,5 дм².
2. Определение: Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек. АВ1 и СD1 скрещивающиеся прямые по определению.
Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
Проведем диагональ А1В грани АА1В1В. A1B параллельна СD1 как соответствующие диагонали противоположных граней параллелепипеда. АВ1 и А1В - скрещивающиеся прямые. Следовательно, искомый угол - это угол между прямыми АВ1 и А1В. Боковая грань АА1В1В - прямоугольникб диагонали которого пересекаются в точке О и этой точкой делятся пополам. Диагонали равны между собой и по Пифагору равны √(АА1²+АВ²) = √(6²+8²) = 10 ед. Тогда АО = А1О = 5 ед. АА1 = 6 ед. (дано).
Найдем косинус этого угла по теореме косинусов:
Cosα = (AO²+A1O² - AA1²)/(2*AO*AO) = (5²+5²-6²)/(2*25) = 14/50 = 0,28.
Тогда по известной формуле
Sinα = √(1 - Cos²α) = √(0,9216) = 0,96.