В треугольнике LMN дана высота KL. Найдите эту высоту, если периметр LMN равен 36 см,периметр треугольника KLM равен 20 см,периметр треугольника NLK равен 28 см
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Зовнішній кут дорівнює сумі двох внутрішніх кутів трикутника не суміжних з ним.
Сума кутів трикутника дорівнює 180 градусів.
З умови задачі слідує, що
кут А+кут В=11*р
кут В+кут С=12*р
кут А+кут С=13*р , де р - деяке число градусів
додавши ці три рівності отримаємо
2*(кут А+кут В+кут С)=(11+12+13)*р або
2*180 градусів=36р або
р=10 градусів
і
кут А+кут В=110 градусів
кут В+кут С=120 градусів
кут А+кут С=130 градусів
а значить
кут С=180-110=70 градусів
кут А=180-120=60 градусів
кут В=180-130=50 градусів
відповідь: 50 градусів, 60 градусів, 70 градусів