1))). Если луч есть биссектриса угла, то любая точка его равноудалена от сторон этого угла.
2))). Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
3))). 1. Точка пересечения биссектрис треугольника- центр вписанной окружности ;
2. Точка пересечения серединных перпендикуляров треугольника- центр описанной окружности ;
3. Точка пересечения медиан треугольника (медианы треугольника пересекаются в отношении 2:1)
4. Точка пересечения высот треугольника - ортоцентр фигуры (центр вписанной и описанной окружности).
Объяснение:
ответ:
6) х=5; у=10; а=15
объяснение:
№6
1) рассмотрим большой треугольник с основанием 20
2) у-средняя линия, т.к. делит стороны пополам
3) следовательно она равна половине основания; у= 20: 2= 10 см
4) рассмотрим трапецию с основаниями 20 и 10 см
5) а-средняя линия, т.к. делит стороны пополам
6) следовательно она равна половине суммы оснований; а= (20+10) : 2=15 см
7) рассмотрим маленький треугольник с основанием 10 (у)
8) х- средняя линия, т.к делит стороны пополам
9) следовательно она равна половине основания; х= 10 : 2=5