В ортонормированном базисе заданы векторы а=(2; -3;1) b=(-1;2;0). Найти вектор с, перпендикулярный векторам а и b, длина которого равна единице.
Находим вектор d, перпендикулярный двум заданным с векторного произведения.
I j k| I j
2 -3 1| 2 -3
-1 2 0| -1 2 = 0i – 1j + 4k – 0j – 2i – 3k = -2i – 1j + 1k.
Вектор d = (-2; -1; 1), его модуль равен √((-2)² + (-1)² + 1²) = √6.
Вектор «с» с единичной длиной получим из вектора d, разделив его на его же модуль.
c = ((-2/√6); (-1/√6); (1/√6)).
Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
9 см, 15 см.
Объяснение:
Нехай основа а=х см, тоді основа в=х+6 см.
За формулою S=(a+в):2*h знайдемо основи трапеції:
96=(х+х+6):2*8
96=(2х+6):2*8
96=2(х+3):2*8
96=8(х+3)
8х+24=96
8х=72
х=9.
Менша основа а=9 см, в=9+6=15 см.