(назовём трапецию АВСD)Очень просто, опусти второй, подобный первому, перпендикуляр. Поскольку длина первого отрезаного от основания отрезка равна 51, то и второй будет равен ему из - за того, эта трабеция равнобедренная. Значит вычтем от 94 51. 94-51=43. Значит, имеем прямоугольник.( жалко не могу начертить) Зная, что у прямоугольника противоположные стороны равны, получам длину меньшего основания. Она равна 43. А теперь по формуле нахождения средней линии, находим эту среднюю линию: (не забываем, что у большего основания длина равна 94+51=145) (145+43):2=94.
Очень, очень просто)))
а)
Точка
Симметричная ей точка
A (0; 1, 2),
A1 (0; -1; -2);
B (3; -1; 4),
B1 (-3; 1; -4);
С (1; 0; -2),
С1 (-1; 0; 2).
б)
Ось симметрии — ось Ох:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; -1; -2);
B (3; -1; 4),
В1 (3; 1; -4);
С (1; 0; -2),
С1 (1; 0; 2).
Ось симметрии — ось Оу
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; 1; -2);
B (3; -1; 4),
B1 (-3; -1; -4);
С(1; 0; -2),
С1 (-1; 0; 2).
Ось симметрии — ось Oz:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; -1; 2);
B (3; -1; 4),
B1 (-3; 1; 4);
С (1; 0; -2),
С1 (-1; 0; -2).
в)
Если плоскость симметрии — плоскость Оху, то:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; 1; -2);
B (3; -1; 4),
В1 (3; -1; -4);
С (1; 0; -2),
С1 (1; 0; 2).
Плоскость симметрии — плоскость Oyz:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; 1; 2);
B (3; -1; 4),
B1 (-3; -1; 4);
С (1; 0; -2),
С1 (-1; 0; -2).
Плоскость симметрии — плоскость Oxz:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; -1; 2);
B (3; -1; 4),
B1 (3; 1; 4);
С (1; 0; -2),
С1 (1; 0; -2).