Площадь треугольника равна половине произведения его высоты на сторону, к которой проведена. Сторона, к которой проведена высота, равна 3+12=15 м. Высоту нужно найти. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒ h²=3*12=36 h=√36=6 (м) Ѕ=h*a:2 S=6*15:2=45 м² Периметр - сумма всех сторон многоугольника. В данном случае сумма длин катетов и гипотенузы: Р=a+b+c а=√(3*15)=3√5 м b=√(12*15)=6√5 м Р=15+9√5 (м) Катеты можно найти и по т. Пифагора, затем найти площадь половиной их произведения.
х(5х-6)=0
х1=0 или 5х-6=0
5х=6
х2=1,2
ответ: 0
2) 5х^2 - 6х=0
ответ:1,2
3) 25х^2 - 1=0
25х^2=1
х^2=1/25
х=√1/25
х1=1/5
х2=-1/5
ответ:-1/5
4) 5х^2 - 6х +1=0
х1/2=6+-√36-4*5*1/10=6+-√16/10= 6+-4/10
х1=6+4/10=10/10=1
х2=6-4/10=2/10=0,2
ответ:1
5) 5х^2 - 6х +2=0
D=√36-4*5*2/10=√36-40/10=√-4/10
ответ:D<0
6) 5х^2 - 6х +2=0
ответ: нет корней
7) 25х^2 - 6х +0,36=0
D=√36-4*25*0,36/50=√36-36/50=0/50=0
ответ: D=0
8) 25х^2 - 6х +0,36=0
x1/2=6+-√36-4*25*0,36/50=6+- √36-36/50=6+-0/50=6/50
x1=6+0/50=6/50=0,12
x2=6-0/50=6/50=0,12
ответ:2 корня