1)угол мnk=78:2=39 градусов-по св. вписанного угла.
Угол nok=180-78=102°-по св смежных углов
Х=180-102-39=39°
ответ:39°
2)ao=ob=r, значит этот треугольник равнобедренный и углы при основании равны по 60 градусов, а значит тругольник равносторонний и х=8
ответ:8
3)ol=om=r=32
По т пифагора х=примерно 45(но это не точно)
4)дуга kl=360-143-77=140°
Х=140:2=70°-по св вписанного угла
5)дуга mn=40*2=80°
Дуга sn=180-80=100°
ответ 100°
6)180-124=56°
Х=56:2=28°
ответ 28°
7)дуга mq=25*2=50°
Х=180-50=130°
ответ 130°
8)360-112-46=202°
Х=202:2=101°
ответ 101°
Дано: ΔABE - равнобедренный, АВ=ВЕ= 17 см, АЕ= 16 см, АЕВ∈α, CB⟂α, C∉α, СВ= 8 см.
Найти: расстояние от точки C до стороны треугольника AE
Решение.
1) Проведём высоту ВН в равнобедренном треугольнике АВЕ => BH⟂AE
Так как BH⟂AE и по условию ВС⟂α, по теореме о трёх перпендикулярах следует, что наклонная СН⟂АЕ. Наклонная СН и есть расстоянием от точки С до стороны АЕ ΔABE.
2) В треугольнике ЕСВ (∠ЕВС=90°, т.к. СВ⟂α) по т.Пифагора находим гипотенузу ЕС:
ЕС²= ЕВ²+ВС²;
ЕС²= 17²+8²;
ЕС²= 289+64;
ЕС²= 353
3) Поскольку ΔABE - равнобедренный, а ВН - высота, проведённая к основанию АС, то ВН также является и медианой ΔАВЕ => АН=НЕ= ½АЕ= 16 : 2 = 8 см.
4) В ΔCHE (∠CHE=90°) по т.Пифагора находим СН:
СН²= ЕС² – НЕ²;
СН²= 353–8²;
СН²= 353–64;
СН²= 289;
СН= 17 см (–17 быть не может)
Расстояние от точки C до стороны треугольника AE равно 17 см.
ответ: 17 см.