объяснение:
центр описанной окружности треугольника совпадает с точкой пересечения серединных перпендикуляров. значит, нам нужно найти эту точку.
есть два способа ( может быть их больше ), которые вроде смогут .
1. способ:
линейка имеет форму прямоугольника. каждую сторону треугольника делим пополам, и оттуда вычертим серединные перпендикуляры.
2. способ. линейка не имеет вид ппямоугольника или углы уже не прямые. каждая сторона будет основанием для нового треугольника, с концов стороны мы проводим равные отрезки соединёнными в одну точку. теперь проводим медиану, поделив основание пополам, а медиана в равнобедренном треугольнике, проведённая к основанию, и есть высота. делаем это с каждой стороной.
теперь, у нас есть все серединные перпендикуляры. если они ещё не соединились друг с другом, нужно продолжить их.
Объяснение:
1)<AOB=<COD как вертикальные, <C =<A(по усл), BO=OD,
тр АОВ=тр ОСД по гипотенузе и острому углу
2)<A=<C, <AOB=<COD(вертикальные), значит и <B=<D,
3) тр. ABD=тр ACD (AD- общая, АВ=CD) по двум катетам,
значит <B=<C
4) тр АВР= тр А1В1Р1 по гипотенузе( АВ=А1В1 ) и острому углу (<1=<2),
тр АВС= тр А1В1С1 по катету(АВ=А1В1) и прилежащему острому углу
(<1=<2) и следовательно тр АРС=тр А1Р1С1 по катету(АР=А1Р1 и гипотенузеАС=А1С1)
5)тр ВРС= тр АКД по двум катетам (ВК=КД, АК=КС)