Даны точки A(2,4,-1) B (-1,1,3), C(5,1,2). Найдите координаты точки D, такой , что четырёхугольник ABCD - параллелограмм
Объяснение:
.Пусть координаты D(x;у) .Т.к. ABCD-параллелограмм, то
диагонали , точкой пересечения , делятся пополам. Пусть О-точка пересечения . Тогда
1) АО=СО. Координаты О : х(О)=(х(А)+х(С)):2 , х(О)=(2+5):2=3,5. Аналогично у(О)=(4+1):2=2,5 , z(O)=(-1+2):2=0,5.
2) ВО=DО.
х(О)=(х(B)+х(D)):2 , 3,5=(-1+x(D)):2, 7=-1+x(D), x(D)=8;
y(О)=(y(B)+y(D)):2 , 2,5=(1+y(D)):2, 5=1+y(D), y(D)=4;
z(О)=(z(B)+z(D)):2 , 0,5=(3+z(D)):2, 1=3+z(D), z(D)=-2;
D( 8; 4; -2).
.
Точка D может быть получена параллельным переносом точки C на вектор BA . Вектор BA( 2+1 ;4-1 ; -1-3 ) или вектор ВА(3;3;-4).Вектор ВА=СD , значит и координаты равны ⇒ х(СD)=x(D)-x(C) или 3=x(D)-5, x(D)=8 .
Аналогично 3=у(D)-1, у(D)=4 .
-4=z(D)-2 , z(D)=-2 . Получили D( 8; 4; -2).
1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
Объяснение:
10см
Объяснение:
R^2= S/П×72/360 = 20П/0,2П = 100
R=√100=10cm