1)Окружность вписана в треугольник, если она касается всех его сторон. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности. Центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника. От этой точки нужно провести перпендикуляр к любой стороне и это расстояние будет радиусом вписанной в треугольник окружности. 2) Окружность называется описанной вокруг треугольника, когда все его вершины лежат на окружности. Центром описанной окружности является точка пересечения срединных перпендикуляров к сторонам треугольника. Радиусом такой окружности будет расстояние от этого центра до вершин треугольника. 3) Вневписанная окружность — окружность, касающаяся одной стороны треугольника и продолжения двух других его сторон.Центр вневписанной окружности лежит на пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах. Радиусом ее будет отрезок перпендикуляра, проведенного из центра окружности к стороне треугольника или к ее продолжению.Вневписанных окружностей у треугольника может быть 3 - к каждой стороне.
ВВ1 - биссектриса угла АВD, т.к. АВ1 = В1D , то по признаку равнобедренного треугольника если медиана и биссектриса, выходящие из одной вершины , совпадают, то этот треугольник равнобедренный => треугольник АВD равнобедренный, тогда АВ = ВD => треугольник ABD - равносторонний! Т.к. АВ = ВD = АD (АВ = АD т.к. АВСD - ромб) => Все углы в равностороннем треугольнике равны по 60 градусов.
В ромбе треугольник АВD = треугольнику ВDС , по 3-ему признаку равенства треугольников (по трем сторонам) (т.к. ВD - общая сторона, АВ = АD = DC = ВС) Отсюда:
Угол А = Углу С = 60 градусов.
АС и BD - диагонали ромба, они же являются и биссектрисами соответствующих углов! Отсюда Угол B = угол ABD + угол DBC = 2 угла ABD = 2 * 60 = 120
10
Объяснение:
28=х+х+8
28-8=х+х
20=2х
х=10
АС=10
ВС=10+8=18