Определение: "Расстояние от точки до прямой – это длина перпендикуляра, опущенного из точки на прямую". Если из двух ЛЮБЫХ точек, находящихся по одну сторону от прямой, на прямую опущены перпендикуляры, и они равны, то прямая, соединяющая эти две точки, параллельна данной прямой, так как фигура, образованная этими прямыми и перпендикулярами - прямоугольник. Противоположные стороны прямоугольника параллельны. Поэтому, соединив данное множество точек, находящихся на данном расстоянии от данной прямой, мы получим прямую, параллельную данной. Что и требовалось доказать.
Рассмотрим треугольники АОЕ и АFC. Угол АОЕ=углу F (одна полоска) - как соответственные, Угол А (2 полоски) - общий. треугольники АОЕ и АFC подобны - по двум углам. Из подобия следует:
ОF/AF = EC/AC = 2,5/8,5 = 4/17; ОF = AF*4/17;
ОE = FC*AE/AC = 2*6/8,5 = 25/17;
Рассмотрим треугольники ОКЕ и ВКF. угол BKF равен углу OKE (3 полоски) - как вертикальные, угол KBF равен углу KEO - как накрест лежажие (4 полоски). треугольники ОКE и BKF подобны - по двум углам. Из подобия следует:
PK/KF = PE/BF = (24/17)/3 = 8/17;
PF = KF + PK = KF(1 + 8/17) = KF*25/17;25*KF = 4*AF;
KF = AF*4/25; AK = AF - KF = AF*21/25; AK/KF = 21/4.
ответ: AK/KF=21/4