Рассмотрим треугольники OMK и МFО ( FO — расстояние от точки О до прямой МN). Угол ОКМ = 90 градусов, угол ОFМ = 90 градусам ( т. к. расстояние от точки до прямой — это перпендикуляр). Гипотенуза ОМ — общая у обоих треугольников, угол FМО = углу ОМК (т. к. МH — биссектриса угла М, т. Н принадлежит прямой NР). Следовательно, треугольники OMK и МFО равны по признаку равенства прямоугольных треугольников ( если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны). Следовательно, OF = OK = 9 см., т. е. расстояние от точки О до прямой МN = 9 см. ответ: расстояние от точки О до прямой МN = 9 см
ABCD-Ромб
Bd=13см(меньшая диагональ)
BH=12см
Найти S
у Треугольника BDH угол H=90 градусов,BD=13,BH=12cm теперь по тиареме Пифагора:
HD=Под Корнем BD(D в квадрате)-BH(Hв квадрате)=под корнем 13в квадрате-12в квадрате=5 см
теперь 2 у трегуольника ABH Угол h=90 градусов,BH=12,AH=AD-HD=(AB-5)cm теперь по теореме пифагора
AB(B в квадрате)=AH(H в квадрате)+BH(H в квадрате)
AB(B в квадрате)=(AB-5)в квадрате+12 в квадрате
AB(B в квадрате)=AB(B в квадрате)-10AB+25+144,10AB=169
AB=16.9
и Теперь Находим площадь
S=Ab умножить на BH=16,9 умножить на 12=202,8см(см в квадрате)
S=202.8см