Центр описанной окружности лежит на пересечении серединных перпендикуляров. Если серединный перпендикуляр к основанию проходит через вершину, то он по определению является высотой и медианой треугольника. Если в треугольнике высота совпадает с медианой, то треугольник является равнобедренным. Центр вписанной окружности также лежит на серединном перпендикуляре к основанию треугольника, если тот проходит через вершину, так как центр вписанной окружности лежит на пересечении биссектрис, а в равнобедренном треугольнике высота, медиана и биссектриса, проведённые из вершины, противолежащей основанию, совпадают.
4. Меньшая диагональ ромба равна 12 см, а один из углов - 60°. Найдите вторую диагональ и сторону ромба.
ΔABD равнобедренный (AB = AD как стороны ромба) и ∠BAD = 60°, значит ΔABD равносторонний. Тогда АВ = AD = BD = 12 см.
По свойству параллелограмма сумма квадратов диагоналей равна сумме квадратов сторон параллелограмма: AC² + BD² = 4·AB² AC² = 4·12² - 12² = 3·12² AC = 12√3 см
5. Большее основание и большая боковая сторона прямоугольной трапеции равны а см, а один из углов - 60°. Найдите площадь трапеции.
AD = DC = a см, ∠ADC = 60°, значит ΔADC равносторонний. Проведем высоту трапеции СН. Она является высотой и медианой равностороннего треугольника ADC, тогда СН = а√3/2 см, АН = НD = а/2. СН ║ АВ (как перпендикуляры к одной прямой) и СН = АВ (как высоты трапеции), тогда АВСН - прямоугольник, значит, ВС = АН = а/2 см. Sabcd = (AD + BC)/2 · CH = (a + a/2)/2 · a√3/2 = 3a²√3/8 см²
Средняя линия = АД+ВС/2
47+4/2=25.5