Координаты точки А будем находить из прямоугольного треугольника, гипотенузой которого будет отрезок ОА=36, первым катетом - отрезок ОВ, лежащий на оси Ох, а вторым катетом - перпендикуляр АВ, опущенный из точки А на ось Ох.
Т.к. угол, который луч OA образует с положительной полуосью Ox
α = 30 °, то катет АВ, лежащий напротив этого угла равен половине гипотенузы ОА, т.е. АВ=ОА:2=36:2=18 (это у - координата точки А).
Найдём длину катета ОВ:
ОВ=√(OA²-AB²)=√(36²-18²)=√972 =18√3 (это х - координата точки А)
(x/3)^2+y^2=1 - каноническое уравнение эллипса полуоси 3 (вдоль оси х) и 1 (вдоль оси у) F1 и F2 - фокусы эллипса, расположены на оси х, так как полуось вдоль х длиннее фокусное расстояние с=корень(3^2-1^2)=2*корень(2)
F1=(-2*корень(2);0) F2=(2*корень(2);0)
2)9x^2+25y^2-1=0 (x/(1/3))^2+(y/(1/5))^2=1 - каноническое уравнение эллипса полуоси 1/3 (вдоль оси х) и 1/5 (вдоль оси у) F1 и F2 - фокусы эллипса, расположены на оси х, так как полуось вдоль х длиннее фокусное расстояние с=корень((1/3)^2-(1/5)^2)=4/15=0,2(6) F1=(-4/15;0) F2=(4/15;0)
А(18√3; 18)
Пошаговое объяснение:
Координаты точки А будем находить из прямоугольного треугольника, гипотенузой которого будет отрезок ОА=36, первым катетом - отрезок ОВ, лежащий на оси Ох, а вторым катетом - перпендикуляр АВ, опущенный из точки А на ось Ох.
Т.к. угол, который луч OA образует с положительной полуосью Ox
α = 30 °, то катет АВ, лежащий напротив этого угла равен половине гипотенузы ОА, т.е. АВ=ОА:2=36:2=18 (это у - координата точки А).
Найдём длину катета ОВ:
ОВ=√(OA²-AB²)=√(36²-18²)=√972 =18√3 (это х - координата точки А)
Итак, запишем координаты точки А: А(18√3; 18)
Объяснение: