Из условия известно, что стороны прямоугольника равны 8 дм и 1,5 м (=15 дм). Для того, чтобы найти диагональ прямоугольника рассмотрим прямоугольный треугольник образованный сторонами прямоугольника и диагональю.
Стороны прямоугольника это катеты прямоугольного треугольника, а диагональ прямоугольника — гипотенуза.
Для нахождения гипотенузы будем использовать теорему Пифагора.
Сумма квадратов катетов равна квадрату гипотенузы.
a^2 + b^2 = c^2;
8^2 + 15^2 = c^2;
64 + 225 = c^2;
c^2 = 289;
c = 17 дм. диагональ прямоугольника
Объяснение:
α⊥β, α∩β = а.
Проведем МА⊥α и МВ⊥β.
Тогда МА = 12 см - расстояние от точки М до плоскости α,
МВ = 5 см - расстояние от точки М до плоскости β.
Затем проведем АС⊥а и ВС⊥а.
Если прямая, лежащая в одной плоскости, перпендикулярна линии пересечения перпендикулярных плоскостей, то он перпендикулярна другой плоскости. Значит
АС⊥β и ВС⊥α.
АС║МВ и ВС║МА как перпендикуляры к одной плоскости, значит
МАСВ прямоугольник.
Прямая а перпендикулярна плоскости МАВ (а⊥АС и а⊥ВС), значит
а⊥МС.
МС - искомое расстояние от точки М до прямой а.
Из прямоугольного треугольника МАС по теореме Пифагора:
МС = √(МА² + АС²) = √(144 + 25) = √169 = 13 см